Seminar - Karen Kasza

Dr. Karen Kasza is pictured
May 3, 2021 - 12:00pm
Location: 
Virtual Seminar - Join Over Zoom

Clare Boothe Luce Assistant Professor of Mechanical Engineering

Columbia University

Host: Iva Greenwald

Title: Biophysical mechanisms controlling tissue flows during development

Abstract: During embryonic development, groups of cells reorganize into functional tissues with complex form and structure. Tissue reorganization can be rapid and dramatic, often occurring through striking embryo-scale flows that are mediated by the coordinated actions of hundreds or thousands of cells. In Drosophila, cell rearrangements in the embryonic epithelium rapidly narrow and elongate the tissue, producing a tissue flow that doubles the length of the body axis in just 30 minutes. These types of conserved tissue movements can be driven by internal forces generated by the cells themselves or by external forces from neighboring tissue. While much is now known about the molecules involved in these cell and tissue movements, it is not yet clear how these molecules work together to coordinate cell behaviors, give rise to emergent tissue mechanics, and generate coherent flows at the tissue and embryo-scales. To gain mechanistic insight into this problem, my lab combines genetic and biophysical approaches with emerging optogenetic technologies for manipulating molecular and mechanical activities inside cells with high precision. I will discuss some of our recent findings on how cellular properties and mechanical forces are regulated in the Drosophila embryo to allow (or prevent) rapid cell rearrangements and tissue flows during specific events in embryonic development.

Please email [email protected] for a link to the seminar.

Business Office

Department of Biological Sciences
500 Fairchild Center
Mail Code 2401
Columbia University
1212 Amsterdam Avenue
New York, NY 10027

Academic Office

Department of Biological Sciences
600 Fairchild Center
Mail Code 2402
Columbia University
1212 Amsterdam Avenue
New York, NY 10027
[email protected]
212 854-4581